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Abstract. Numerical simulations show that the time lag between the quench and the 
establishment of a steady-state regime of nucleation depends on the quench rate. For the 
fast quenches the time lag is found to be exponentially, rather than linearly, dependent 
on  the radius of the critical nucleus. It is shown qualitatively that the time lag for slow 
quenches is smaller than th,at for the fast quenches. All these results are obtained in the 
framework of Glauber dynamics. For Kawasaki dynamics it is much harder to detect the 
beginning of the steady-state regime, and the results are less convincing. 

1. Introduction 

The classical theory of nucleation (Zettlemoyer 1969) describes the relaxation of a 
metastable state by the distribution function W(r,  t )  of nuclei of the stable phase of 
size r at time t. This function satisfies the continuity equation: 

a W (  r, t )  aJ(  r, t )  ~- - -- 
at  ar 

where the nucleation rate J (  r, t )  in turn depends on the nuclei provided. One usually 
assumes that the equation 

a W(r,  t )  J ( r ,  t ) = - F ( r ) W ( r ,  r)-D(r)--- 
d r  

describes the systematic growth (decay) and the diffusive growth of the nuclei respec- 
tively. By taking one or another form of the functions F (  r )  and D( r ) ,  one can easily 
find the steady-state solution of equation (1). In fact, the small nuclei tend to shrink 
because of their high surface to volume ratio. Eventually some nuclei will grow to the 
so-called critical size rc beyond which they are stable and the system will then develop 
into one containing two phases. Hence, the ‘steady-state’ solution will no longer exist. 
One ‘achieves’, however, a steady-state regime by the theoretical assumption that all 
nuclei of a critical size, when they appear, decompose and return to the system. The 
smallest size 5 of a nucleus has to be defined, along with the maximum size r,. Indeed, 
the statistical mechanical description of metastable states requires some additional 
constraints, such as a coarse graining procedure (Gunton er a1 1983), i.e. the introduc- 
tion of this minimal length 5. 
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The time-independent steady-state solution of equation ( l ) ,  Wss( r ) ,  for some given 
functions F ( r )  and D ( r ) ,  can be easily found from equation (2) with the constant 
nucleation rate (flux) J,,. The latter defines the number of new phase nuclei, say, 
liquid droplets in the vapour environment, formed per second per cubic centimetre. 

Another quantity which can be observed in laboratory experiments is the so-called 
integrated flux N (  t ) ,  i.e. the number of critical nuclei appearing during the observation 
time t :  

N,, = Jsst ,  (3) 

The second formula in equation (3) indicates that in the steady-state regime the 
integrated flux increases linearly with time. 

We are interested, however, in the transient processes which can be characterised 
by the time until the steady state is established. This time is usually called the time 
lag 8 (Kelton et a1 (1983). 

There are two possible definitions of this time lag, 0, and O N ,  associated with the 
time dependence of the flux J ( r ,  t )  (or the distribution function W ( r ,  t ) )  and the 
integrated flux N (  t ) ,  respectively. In the simplest case, where J (  r, t )  = 
J,,[ 1 - exp( - t /  e,)] and we define by N = J5,( t - O N ) ,  it is clear from equation (3) 
that 0, = @ N .  If, on the other hand, J (  r, t )  = J,,[1 - A  exp(-t/B,)], it follows from 
equation (3) that N = Jss( t - A&,). Therefore, in this case the characteristic time for 
the flux J ( r ,  t ) ,  derived from -t/e,+ln A = -1, will be 0, = e,( 1 +In A).  On the other 
hand, in this case the characteristic time defined by the integrated flux ON = AB,. Hence 
the difference between the two definitions of the time lags is now very important. 
Indeed, the form of A depends on the initial conditions, i.e. on the ratio r J 6 .  If, for 
example, A - exp( y (  r f / t * ) ) ,  y s 1 as we found previously (Rabin and Gitterman 1984), 
then the time lags, O N ,  defined by the integrated flux will be (exponentially) larger 
than that defined by the flux, 0, (or by the distribution function, e,,,). One concludes, 
therefore, that even if 0, and O w  are quite small, the time lag which contains the 
time integral of the small differences between J ( r ,  t )  and J5, may be large. It is this 
time ON which we use as the time lag. Such a definition seems to be natural, because 
in laboratory experiments only B N  can be directly or indirectly observed. The main 
aim of the present analysis is to find ON from numerical simulations. 

Recently we formulated a new approach to transient phenomena in nucleation 
theory (Rabin and Gitterman 1984). It was shown, in part, that one has to distinguish 
between ‘fast’ and ‘slow’ quenches. The metastable state is a state of incomplete 
equilibrium, i.e. only small nuclei of size less than some characteristic radius A come 
to equilibrium immediately after a quench. The magnitude of A is determined by the 
rate of the quench. If a quench is performed slowly enough, so that even the nuclei 
of large size manage to come to equilibrium straight after a quench, then A is very 
close to rc .  It is precisely this case that is usually considered in the time-dependent 
nucleation theory (Kelton et a1 1983). All dynamic events are occurring now in the 
range of nuclei sizes close to rc and the integrals involved are calculated by the method 
of the steepest descent. The final result is that 8 - rz/  K where K is the typical diffusion 
coefficient in liquids, K = 

The situation is quite different for a ‘fast’ quench where only small nuclei of a new 
phase are in equilibrium immediately after a quench ( A  close to 6 ) .  It takes a long 
time (8N)fast  to establish the steady-state regime. According to our previous papers 

cm2 s-’. 
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(Rabin and Gitterman 1984, Gitterman et a1 1984, Edrei and Gitterman 1986a) one 
finds that ( - exp( y (  r:/ Do))  where y is the numerical coefficient of order unity. 
Here Do has the dimensions of length squared and can be expressed in terms of the 
surface tension U, Do = 47rup, where p = ( k T ) - ’ .  For calculations, one can assume 
that Do = 5’. 

At the end of our previous theoretical analysis (Rabin and Gitterman 1984, Gitter- 
man et a1 1984), we found two new results which need experimental verification. 

(1) For fast quenches in the three-dimensional case the time lag eN depends 
exponentially on rf and not linearly as it is usually assumed (Kelton et a1 1983). 

(2) A decline in the quench rate results in a decrease of O N ,  and its exponential 
dependence on rf changes gradually into a linear one. 

We now describe the Monte Carlo simulations which clearly show the dependence 
of the time lag on the rate of quench. To the best of our knowledge this is the first 
systematic analysis of this kind, although one can see, for example from figure 1 in 
Kelton et a1 (1983), that the time lag depends on the minimal size of the nuclei present 
immediately after a quench. 

In our calculations we analyse the dynamics of the Ising systems with nearest- 
neighbour interaction in two different models: those of Glauber and Kawasaki. The 
Kawasaki dynamics ( KD) describe a system with conserved order parameter like binary 
alloys AB, while the Glauber dynamics (GD) are related to systems with non-conserved 
order parameter, such as ferromagnets or liquid-gas systems. In the GD one starts 
from a state with all spins oriented in one direction and then one quenches the system 
into a metastable state by applying a field h antiparallel to the spins. Analogously, in 
the KD the initial state is given by a random distribution of B atoms in an ‘host’ lattice 
of A atoms and a quench is achieved by changing the temperature. The probability 
of a change of configuration on site i is given by Pi = exp(-pAu,)[ 1 +exp( -pAu,)]-’, 
where Aui is the change in the energy of the system which results from one flip in the 
GD or from an exchange of the occupation of two nearest sites in the KD. One Monte 
Carlo step per site is defined as going over all sites in a system and checking each one 
to determine whether to change configuration or not. After any specified number of 
steps the computer program lists the existing nuclei (clusters) and their respective sizes. 
In the KD we call ‘nuclei’ of size n the group of B atoms located on n nearest sites 
independent of its shape. Nuclei in the GD are a set of neighbouring spins parallel to 
the external field. Consideration of the distribution of nuclei on different steps gives 
an idea of the evolution of the system. 

We are interested in the transient process before the steady-state regime is started. 
One has to find, therefore, some criterion describing the beginning of the steady-state 
regime. Then, the required number of steps will be proportional to the time lag. The 
next stage will be a comparison of the time lags for fast quenches, when one goes 
straight away to a given metastable state, with those of slow quenches when a final 
state can be reached by a set of changes of the temperature or the magnetic field, 
waiting some time at each value. 

According to our theoretical approach described above, the steady state is defined 
by the linear increase of the number of critical nuclei. Therefore, for each quench one 
has to estimate first the appropriate critical radius and then analyse the distributions 
of nuclei on different Monte Carlo steps to find when the number of critical nuclei 
starts to increase linearly with the number of steps. We have indeed proceeded in this 
way in the GD. It is quite clear that the KD is much slower than the GD, so that it is 
more difficult to discern when the steady-state regime has started. As a criterion in 
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the KD we consider a number of steps after which the numbers of small nuclei remain 
constant with time. We now turn to a more detailed discussion of our simulations. 

2. The Glauber dynamics 

We have worked with the three-dimensional simple cubic lattice consisting of 168 x 
168 x 168 sites with periodic boundary conditions in the x and y directions (these 
numbers came from the computer program kindly given to us by Dr D Stauffer). Most 
of the runs were done at T=0.59TC and with the magnetic field h (in units kTJ2) 
varying between 0.41-0.52. For larger h the decay of a metastable state is too rapid, 
and for smaller h nothing could be seen due to computing time limitations. For each 
h the size of a critical nucleus r, is given by the following formula (Burkner and 
Stauffer 1983): rC-(2r/3h),  where r is related to the bulk surface tension y, r =  
(36~)’”(kT,)-’y, The data for y were taken from the Monte Carlo simulation done 
by Burkner and Stauffer (1983). 

It should be noted that the above formula for rc holds, strictly speaking, only for 
h + 0 and T + T,. Therefore, we use it only as a rough guide for an estimate of the 
critical radius which is improved afterwards during numerical simulations. 

The results of numerical simulations for external field h = 0.45 are shown in table 
1. Preliminary estimates show that the number of sites in the critical nucleus is about 
100. One can see from table 1 that the first nucleus larger than rc appears at step 150, 
the second one at 165, the third at 170, etc. (At step 220 the nuclei are so large that 
coagulation begins.) We therefore conclude that for this special h, i.e. for given r, ,  
the time lag ( 6 ~ ) f ~ ~ t  is equal to 150 steps. Furthermore, one can see from the table 
that the latter result is not too sensitive to the precise value of r,. 

In order to find reliable average results one needs to perform many runs. We have 
performed 46 different runs for external fields h varying between 0.41 and 0.50. For 
every field one can find a typical time lag (6N)fast. Figure 1 shows against 
r:, found by averaging all runs. One can see that In( 6N)fast is (approximately) propor- 
tional to rf,  in accordance with our theoretical predictions. 

The agreement between the theory and simulations should be considered qualitative 
rather than quantitative because of the small accessible range of fields h, inaccuracy 
in an estimate of r,, statistical uncertainty of numerical simulations, etc. However, 
figure 1 seems to indicate that the dependence obtained cannot be described by the 
usual formula, 6~ - ri  (Kelton e t a /  1983) and it is, in fact, much closer to an exponential 
dependence. 

We also examined slow quenches within the framework of the GD. One has to 
decide, first of all, the meaning of a ‘slow’ quench. In fact, we have only an upper 
limit for ‘slowness’, namely, the time lag of the slow quench has to be certainly smaller 
than that of the fast quench, (6N)fast. There are, however, still many ‘slow’ quenches. 
If, for example, for h = 0.45 the time lag for a fast quench is equal to 150 steps, it is 
obvious that a ‘slow’ quench means that it is performed during a time shorter than 
150 steps. However, it could also be 20, 40 or 60 steps, which can be performed in a 
different number of field jumps. One needs to do much more detailed calculations in 
order to check the dependence of the time lag on different choices. For general 
orientation we have chosen the first intermediate field h i ,  i.e. one performs the fast 
quench from the fully oriented state to the intermediate state, and then several jumps 
until one reaches the final field hf.  We used two sets of states: hi = 0.41; hf = 0.45 and 
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Table 1. Appearance of large nuclei (containing at least 50 sites) at different Monte Carlo 
steps for the Glauber dynamics for an external field h =0.45 with the critical nucleus 
containing approximately 100-124 sites. The second column gives the size of the largest 
nucleus, while the third-sixth columns show the second, third, . . . , largest nucleus, respec- 
tively. 

~~~ 

Steps First Second Third Fourth Fifth Sixth 

130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 
185 
190 
195 
200 
205 
210 
215 
220 
225 
230 
235 
240 
245 
250 

60 
52 
79 

167 
254 
578 

1229 
2 367 
4 374 
7 760 

13 133 
20 864 
31 646 
44 395 
60 779 
80 910 

106 514 
137 435 
257 144 
324 719 
397 292 
416 572 
661 818 
782 365 

71 
107 
163 
3 29 
642 

1321 
2 407 
4 531 
7 984 

13 484 
21 223 
31 413 
44 767 
61 860 
25 4% 
35 288 
48 577 
63 858 
52 604 
66 693 

57 
122 
169 
218 
413 
773 

1119 
2 286 
4 150 
6 964 

11 319 
17 295 
16 566 
22 412 
29 370 
37 895 
20 579 
35 029 

51 
66 

258 
959 

2 176 
3 876 
5 853 
8 652 

11 975 
2218 
4 240 
7 230 

11 822 

281 

84 
110 
136 
245 
455 

1 020 80 
341 
813 484 

3 915 1635 
10 281 2644 

86 72 

hi=0.40; hf=0.44. Then we performed a set of different slow quenches covering 
Ah = 0.04 with different ‘slowness’ by changing the number of stages. Upon reaching 
the final state we checked how many additional steps one has to perform before the 
steady-state regime appears. Unfortunately, the scatter in our data IS too large to 
provide reliable quantitative conclusions. However, one finds that, after a final state 
is reached, the requisite number of steps before the appearance of the critical nucleus 
is of the order of 50 and 120 for h f =  0.45 and hf = 0.44, respectively. These numbers 
are much lower than the corresponding step numbers 150 and 200 for (ON)fast .  These 
results are in qualitative agreement with our theory (Edrei and Gitterman 1986a). 

3. The Kawasaki dynamics 

All dynamic events in the KD are much slower compared with those in the GD. We 
started with the three-dimensional system, but then we turned to a two-dimensional 
lattice, which is more convenient for our purposes. We considered a two-dimensional 
500 x 500 square lattice with nearest-neighbour interactions J. Initially, atoms B are 
randomly distributed in the lattice, which corresponds to a very high temperature. 
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Figure 1. Time lag for fast quenches plotted logarithmically against squared critical radius 
for the temperature T /  T, = 0.59 for the Glauber dynamics in the three-dimensional 168 x 
168 x 168 simple cubic Ising lattice. 

Then the system is quenched to T = 0.59 T, where T, = 2.2695/ k The fraction of B 
atoms was taken from 5% to 30%. For each concentration c, one calculates the 
appropriate r, which is proportional to (In S)- ’  where the super-saturation S = c/ c, 
and the equilibrium concentration c, corresponding to T = 0.59TC is equal to 3.05 x 
(Rao et a1 1976). 

We have met with difficulties in detecting the onset of the steady-state regime. In 
contrast to the GD nothing conclusive can be obtained by considering the appearance 
of one, two, three,. . . , nuclei of the critical size. However, it is possible to suggest 
another criterion for the appearance of the steady-state regime: the steady state is 
reached when the number of small nuclei remains constant with time (Stauffer et a1 
1982). Our simulations show that for a system of 12% B atoms a distribution of single 
atoms hardly changes with time after 600 steps. We use the latter requirement as the 
criterion for the establishment of the steady-state regime ( O N  = 600 steps) because there 
is a large body of data for single atoms. Some reservations regarding the criterion 
chosen have to be made. Detailed analysis (Binder and Muller-Krumbhaar 1974, 
Binder and Stauffer 1976) shows that after this ‘time lag’ the cluster concentrations 
stay nearly constant and then decrease slightly once again, showing that the ‘truly’ 
stationary steady state is not reached. 

We have performed 80 runs for different concentrations of B atoms. These data 
form the basis for figure 2 which gives a nearly linear plot of (In ON)fast against r, 
which was predicted theoretically for the two-dimensional case (Edrei and Gitterman 
1986b). One can conclude from figure 2 that the time lag for the fast quench is described 
by (approximately) exponential rather than by linear dependence on r,. Hence, in 
general, the results obtained for the KD are similar to those obtained by the GD. 
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Figure 2. Logarithmic plot of the time lag for fast quenches as a function of critical radius 
for the temperature T/ T, = 0.59 for the Kawasaki dynamics in the two-dimensional 500 x 
500 square Ising lattice. 

4. Conclusion 

The following results have been obtained. 
(1 )  Numerical simulations confirm our theoretical predictions that the time lag for 

the fast quenches (based on the integrated flux) depends exponentially rather than 
linearly on the squared radius of the critical nucleus. 

(2) Numerical simulations for the Glauber kinetics qualitatively support the depen- 
dence of the time lag on the rate of quench. Additional simulations for different slow 
quenches are needed. 

(3) The Kawasaki dynamics seems to be less appropriate for the numerical simula- 
tions of the transient processes compared with the Glauber dynamics. 

Acknowledgment 

We thank Dr D Stauffer for his advice and for placing his computer program at our 
disposal. 

References 

Binder K and Muller-Krumbhaar H 1974 Phys. Rev. B 9 2328 
Binder K and Stauffer D 1976 Ado. Phys. 25 343 
Burkner E and Stauffer D 1983 Z. Phys. B 53 241 
Edrei I and Gitterman M 1986a Phys. Rev. A 33 2821 
- 1986b 1. Chem Phys. submitted 
Gitterman I, Edrei I and Rabin Y 1984 Application of Field 7heory to Statistical Mechanics (Lecture Noies 

in Physics 216) ed L Gamdo (Berlin: Springer) p 295 



3286 I Edrei and M Gitterman 

Gunton J D, San Miguel M and Sahni P S 1983 Phase Transitions and Critical Phenomena vol8, ed C Domb 
and J L Leibowitz (New York: Academic) p 267 

Kelton K F, Greer A L and Thomson C V 1983 1. Chem. Phys. 79 6261 
Rabin Y and Gitterman M 1984 Phys. Reo. A 29 1496 
Rao H,  Kaloz M H, Leibowitz J L and Marro J 1976 Phys. Reo. B 13 4328 
Stauffer D, Coniglio A and Heerman D W 1982 Phys. Rev. Len. 49 1299 
Zettlemoyer A C (ed) 1969 Nucleation (New York: Dekker) 


